Pacific B usiness R eview (International)

A Refereed Monthly International Journal of Management Indexed With Web of Science(ESCI)
ISSN: 0974-438X(P)
Impact factor (SJIF):8.603
RNI No.:RAJENG/2016/70346
Postal Reg. No.: RJ/UD/29-136/2017-2019
Editorial Board

Prof. B. P. Sharma
(Principal Editor in Chief)

Prof. Dipin Mathur
(Consultative Editor)

Dr. Khushbu Agarwal
(Editor in Chief)

A Refereed Monthly International Journal of Management

 

Testing of Performance Measures on Mutual Fund Debt Schemes: An Empirical evidence in India

 

Shruthi M P

Research Scholar, Department of M.B.A,

Visvesvaraya Technological University

BDT College of Engineering, Davangere-577004

Karnataka, India,

Email: mpshruthigvt@gmail.com

 

Dr. T. Manjunatha

Professor, Department of Management Studies (MBA)

Visvesvaraya Technological University

B D T College of Engineering, Davangere -577004

Karnataka, India,

Email: tmmanju87@gmail.com

ORCID: 0000-0003-2322-0498

 

Dr. V. Rajesh Kumar

Founder and Managing Partner,

Vittam Pravina Gurushala, Bangalore-560011, 

Karnataka, India

Email: vrkumar27@yahoo.com

 

 

 

Abstract

 

We examine the performance of private and public mutual fund debt schemes in India. We use yearly NAVs of two hundred thirty-four debt schemes, Sensex and Treasury bill yield for the study period from April 2006 to March 2021. We apply time series plot, Quandt likelihood ratio (QLR) test, cumulative sum (CUSUM) test, compounded annual growth rate (CAGR using Geo-mean), performance measures and comparison with Nifty 10 yr. benchmark G-sec Index. The result of time series plot QLR test shows no structural break in the data and no change in parameter and further result show that no significance difference between private and public sector mutual fund debt schemes.

Keywords: NAV, CAGR, Sharpe, Treynor, Jensen, Sortino and time series plot.

 

 

Introduction

A mutual fund is an investment scheme that collects money from individuals and invests it in a variety of assets. The funds raised from various investors are typically invested in financial securities such as stocks and money-market instruments such as certificates of deposit and bonds. Asset classes are broadly classified as equity, debt, and money-market instruments. These investments could be made in the short, medium, or long term. Nalini and Tripathy (2005) found that analysed the market timing abilities of Indian fund manager in form of two models. There is only one scheme where market timing ability of the fund managers was shown. Rao(2006) focused on selected open-ended shares. The results exhibited that open ended schemes have made high returns than that of higher risk. Kavita (2009) focused on ELSS schemes analysing performance measures the results shows that ELSS performance is better comparison with its benchmarks. Debashish (2009) found that tax plans have performed intensely performance when measured against the benchmark. Khalid and et.al (2009) found that the Sortino Ratio, which dealt only with downside risk, the results measures given under different ratios had a nearly identical relationship between risk and return. Koulis and et.al(2011) found to attract new domestic and foreign investors, the management of mutual funds must become more significant, so that the return on their portfolio is more attractive than the typical market return. Rahman and et.al (2012) found that growth-oriented mutual funds have not outperformed their benchmark indicators. Some of the funds outperformed the benchmark for systemic risk, & most of the funds did not outperform the benchmark for volatility. Sahil Jain (2012) the results show that, over the last 15 years, private sector mutual fund companies have outperformed public sector mutual fund companies. Vanaja and Karrupawamy (2013) study focused on the performance measures of selected five private sector balanced schemes out of five only two schemes are earned returns above the average returns and Sharpe ratio is positive for all the schemes. Jitendra and Anindita (2015) found that private sector tax saving mutual fund schemes have outperformed as compared to its market return and the performances of public sector tax saving mutual fund schemes were not satisfactory. Nandhini and Rathnamani (2017) found that there is an impact of mutual fund flow in the Indian equity markets. Volatility and uncertainty are part and parcel of equity investing. Shruthi and Manjunatha (2018) argue that 10 per cent of the schemes have high return and lower risk, 10 per cent of the schemes have negative return and 80 per cent of the schemes have high risk and lower return. Chitra and Hemalatha (2018) found that measures results were useful for investors. Antoch et.al (2019) found that testing procedure works well in the framework of the four factors CAPM model and estimate the breaks in the monthly returns of US mutual funds. Shruthi and Manjunatha (2019) argue that investing in equity schemes would be beneficial for investors during the study period. The literature review shows that many researchers are focused on risk return analysis and performance measures. Our study is particularly focusing on comparison analysis of private and public mutual fund debt schemes performance in India using structural break, CAGR, performance measures and comparison of schemes with benchmark.

 

Objectives and Methodology

We have set following objective based on the evidence of review of literature 

  • To measure the performance of private and public sector mutual fund debt schemes in India.

Data Sample and Methodology

This paper focuses on analysis and comparison of performance of debt schemes both for private and public sector mutual funds. We use annual NAV of 169 debt schemes of private sector mutual fund and 65 debt schemes of public sector mutual funds for 15 years study period from April 2006-07 to March 2020-21 to calculate CAGR, Nifty 10 year benchmark G-sec Index returns as market proxy and 91-day treasury bill rate is considered as risk-free rate.  The time-series plot of the CAGR suggests the possibility of structural break.  Quandt Likelihood Ratio (QLR) test and Cumulative Sum (CUSUM) test for structural break indicates that there is no structural break.  Hence, entire 15-years window is considered for analysis.  Kolmogorov-Smirnov test and Shapiro-wilk test are used for testing the normality of the CAGR data. Further, Mann-Whitney test is performed to check whether there is significant difference in the returns of debt schemes of public and private mutual funds. We calculate performance of selected 234 debt schemes by using Sharpe, Treynor, Jensen and Sortino measure and tested for their normality. Mann-Whitney test is performed for ascertaining whether there is significant difference in these performance measures for debt schemes of public and private mutual funds.  Nifty 10 yr. benchmark G-sec Index returns is identified as benchmark and CAGR of return is calculated for the same 15-year window.  Classification of public and private sector schemes are made on the basis of their CAGR as ‘above’ and ‘below’ benchmark.  Chi-square test of independence is used for ascertaining whether there is significant relationship between ‘type of mutual fund scheme’ and ‘performance against benchmark’.

Tools for analysis:

Calculation of rate of return and average return

                                                                                            .... (1)

 Average Return (AR)

            AR =                                                                                                 … (2)

First criterion to check the performance of mutual fund we used CAGR using geomean: it is calculated using annual returns of the schemes and to plot time series to test structural break in sample data. For time series plot we used QLR test and CUSUM test. If there is no structural break entire 15-year data can be considered as single window for analysis. Formula for CAGR:

      CAGR = 1                                                                               … (3)

  1. Kolmogorov-Smirnov Test and Shapiro-wilk test has been used for testing the normality of the CAGR Data. To choose parametric or non-parametric test for testing hypothesis.
  2. Non-parametric test: Mann Whitney test is used for testing hypothesis for private and public mutual fund debt schemes.
  3. Parametric test: Independent sample T-test used for testing hypothesis for private and public mutual fund debt schemes.

Second criterion is performance measures viz: Sharpe, Treynor, Jensen and Sortino are calculated. Related formulas are listed below:

  1. Sharpe Measure (SM): It shows excess of return on portfolio over the risk-free rate in relative to its standard deviation.

Si                                                                                                         … (4)

  1. Standard deviation (SD): It is the square root of the variance & measures the spreading of a dataset comparative to its mean. Square root of variance is determined by calculating the variation between each data point values from the mean.

SD =√∑ (xi − x̅) 2/N                                                                                         … (5)

  1. Treynor Measure (TM): If the measure is higher than benchmark and portfolio has overtaken the market & it indicates high risk adjusted performance.

       Ti =                                                                                                           … (6)

  1. Beta(β): It is mainly related to volatility with the schemes compared with benchmark.

       β =                                                          … (7)

  1. Jensen Measure (JM): To determine scheme is making the Systematic return for its risk. If it is positive than the scheme, it is earning more returns.

     JM = (Ri- Rf) + β (Rm-Rf)                                                                                … (8)

  1. Sortino Measure (SoM): Total volatility by using the assets standard deviation of negative portfolio returns.

      Sid =                                                                                                         … (9)

  1. Kolmogorov-Smirnov Test and Shapiro-wilk Test are used for testing the normality of the CAGR Data. To choose parametric or non-parametric test for testing hypothesis.
  2. non-parametric test: Mann Whitney test is used for testing hypothesis for private and public mutual fund schemes.
  3. Parametric test: Independent sample T-test used for testing hypothesis for private and public mutual fund schemes. For the calculation of these measures, annual 91-day T-bills (treasury bill) rate is considered as risk-free rate (Rf) wherever required.Nifty 10 yr. benchmark G-sec Index is identified as benchmark for debt schemes, drawn from BSE India.

 

Third criterion we used to compare the performance of mutual fund schemes with market proxies: Chi-square test of independence is used for ascertaining whether there is a significant relationship between ‘type of mutual fund scheme’ and ‘performance against benchmark.’ Post Hoc test is used if there is significant relationship between ‘type of mutual fund scheme’ and ‘performance against benchmark.

Results and Analysis

Graph 1: indicate a possibility of structural break of the data. For confirmation we use QLR test and CUSUM test. The QLR test results for structural break null hypothesis is no structural break and test statistic: chi-square (1) = 7.92787 at observation 2014 with asymptotic p-value = 0.0650168. CUSUM test results for parameter stability null hypothesis is no change in parameters and test statistic: Harvey-Collier t (13) = -0.500262 with p-value = P (t (13) > -0.500262) = 0.625252. Both the test suggests that there was no structural break (p-value is exceeding 5percent). Hence, entire 15-year period has been considered as a single window for analysis of performance of Mutual fund debt schemes.

Table 1: The average CAGR suggest that the performance of both public and private sector Debt schemes is similar, however the maximum and minimum returns of both the schemes indicate a contrary outcome. Hence, there is a need to check whether the performance of public sector and private sector mutual fund debt schemes are same or different. For enabling testing of the above, it is essential to check whether the data has been normally distributed or not. Kolmogorov-Smirnov and Shapiro-Wilk tests were applied to check for normality of the CAGR data.

Table 2: The test result indicates that the CAGR data is not normally distributed (being significant at 1percent). Hence, for ascertaining whether there is a significantdifferencein the returns of public and private sector mutual fund debt schemes, non-parametric test has to be applied. Since the variable ‘type of mutual fund’ which is a nominal data has only two classifications (public sector and private sector), and the other variable ‘CAGR’ is a scale data, Mann-Whitney U test has been used.

Table 3 The results shows that null hypothesis ‘there is no significance difference in the returns of public and private sector mutual fund Debt schemes’ is accepted (sig. value having exceeded 5percent).

Table 4 indicates for enabling testing of the above, it is essential to check whether the data has been normally distributed or not. Kolmogorov-Smirnov and Shapiro-Wilk tests were applied to check for normality of the performance measures data.

Table 5 The test result indicates that the performance measures data is not normally distributed for Sharpe, Treynor, Jensen and Sortino measures (being significant at 1percent). Hence, for ascertaining whether there is a significantdifferencein the performance of public and private sector mutual fund debt schemes, non-parametric test has to be applied for Sharpe, Treynor, Jensen and Sortino measures. Since the variable ‘type of mutual fund’ which is a nominal data has only two classifications (public sector and private sector), and the other variable ‘SM, TM, JM and SoM’ is a scale data, Mann-Whitney U test has been used.

Table 6 The null hypothesis ‘there is no significance difference in the performance of public and private sector mutual fund Debt schemes with regards to Sharpe, Treynor, Jensen and Sortino measures’ is accepted (sig. value having exceeded 5percent).

Table 7 indicates for ascertaining whether ‘performance against benchmark’ is dependent upon the type of scheme, Chi-square test is applied (since both criteria in the above table are nominal data).

Table 8 The results indicates that there is no significance relationship between types of schemes and benchmark returns of public and private sector Debt mutual funds with regard to performance against benchmark (since p value for Pearson Chi-square test has exceeded 5percent).

Summary and Conclusion

We examine the compounded annual growth rate of debt schemes in private and public mutual funds. Firstly, we used time series plot to check structural break in data, CAGR, Performance Measures and benchmark comparison. The results indicates that no structural break in the data and no parameter stability. The average CAGR and Performance measures suggest that the performance of both public and private sector schemes is similar, however the maximum and minimum returns of both the schemes indicate a contrary outcome. Hence, we test hypothesis to check whether the performance of public sector and private sector mutual fund schemes are same or different. The results shows that there is no significance difference between private and public sector mutual fund debt schemes.

Implication and Scope for further Research

The results of the study may be used by researchers to compare with other foreign mutual funds schemes which will help for investment decision. We have analysed only debt schemes and further studies can include hybrid schemesin private and public sector mutual funds. Further studies can be undertaken to test the relationship between mutual fund schemes return and risk by applying asset pricing models and R-squared calculation are used to analyse the mutual fund performance.

 

Reference

  • B.M. Munibur Rahman, Fang Qiang, Suborna Barua (2012), Mutual Fund Performance: An Analysis of Monthly Returns of an Emerging Market, Research Journal of Finance and Accounting, 3(4), 34-47.
  • Alexandros Koulis, Christina Beneki, Maria Adam and Charalampos Botsaris (2011), An Assessment of the Performance of Greek Mutual Equity Funds Selectivity and Market Timing, Applied Mathematical Sciences, 5(4),159 - 171.
  • Antoch, Jaromír; Hanousek, Jan; Horváth, Lajos; Hušková, Marie; Wang, Shixuan (2018). "Structural breaks in panel data: Large number of panels and short length time series” Econometric,38 (7), 828–855. doi:10.1080/07474938.2018.1454378. 
  • Debasish, S. (2010), Investigating Performance of Equity-based Mutual Fund Schemes in Indian Scenario. KCA Journal of Business Management, 2(2). https://doi.org/10.4314/kjbm.v2i2.52160
  • Jitendra Kumar and Anindita Adhikari (2017), Comparative Analysis of Performance of Tax Saving Mutual Funds: A Case Study of Selected Asset Management Companies, International Journal of Multidisciplinary Approach and Studies, 2(1), 61-72.
  • Kavita Arora (2015), Risk Adjusted Performance Evaluation of Indian Mutual Fund Schemes 19(1).
  • Nalini prava and Tripathy (2005) “An empirical evaluation of market timing abilities of Indian fund managers on equity linked savings scheme” business review, 6 (2), 179-192.
  • Nandhini, R., & Rathnamani, Dr. V. (2017a). A Study on the Performace of Equity Mutual Funds (With special reference to equity large cap and mid cap mutual funds). IOSR Journal of Business and Management, 19(2), 67–72.
  • Karrupasamy and V.Vanaja (2014), Performance evaluation of selected category of public sector mutual fund schemes in individual, International research journal of business and management, 1
  • Sahil Jain (2012), Analysis of Equity Based Mutual Funds in India, IOSR Journal of Business and Management, 2(1), 01-04.
    • Shazia Iqbal Khalid, Dr. Zaheer Abbas & Dr. S.M. Amir Shah (2009), Performance Evaluation of Close-ended Mutual Funds by Investment Objectives in Pakistan’s
    • Economy, Proceedings of the International Conference on Applied Computer Science 4(2), 96-107.
  • Shruthi M.P and T. Manjunatha (2018), A Study on Risk-Return Analysis of Indian Mutual Fund,Asian journal of management, 9(3),1-4.
  • Shruthi M.P and T. Manjunatha (2019), Performance evaluation of Indian equity mutual funds schemes in India,International journal of management and social science, 8(2.5), 36-39.
  • V Chitra and T Hemalatha (2018), Risk & return analysis of performance of mutual fund schemes in India,International Journal of Applied Research, 4(1), 279-283.

 

 

Time Series Plot of Average Returns of all Private and Public Sector Debt Schemes

Graph 1 Time Series Plot of Average Returns of all Schemes

Note: X axis indicate years i.e., from 2008-2021. Y axis indicates average return of all 234 schemes of private and public sector Debt mutual fund.

Source: drawn by researcher using Gretel software.

 

 

Table 1: CAGR of Private and Public Sector Mutual Fund DebtSchemes:

Schemes

CAGR

Schemes

CAGR

Schemes

CAGR

PVTMFD-001

0.0408

PVTMFD-079

0.0724

PVTMFD-157

0.0098

PVTMFD-002

0.0687

PVTMFD-080

0.0000

PVTMFD-158

0.3594

PVTMFD-003

0.0076

PVTMFD-081

0.0000

PVTMFD-159

0.3527

PVTMFD-004

0.4516

PVTMFD-082

0.0066

PVTMFD-160

0.3597

PVTMFD-005

0.3594

PVTMFD-083

0.0763

PVTMFD-161

0.3598

PVTMFD-006

0.3293

PVTMFD-084

0.0086

PVTMFD-162

0.4644

PVTMFD-007

0.3594

PVTMFD-085

-0.0002

PVTMFD-163

0.0066

PVTMFD-008

0.3386

PVTMFD-086

0.0753

PVTMFD-164

0.0841

PVTMFD-009

0.4603

PVTMFD-087

0.0845

PVTMFD-165

0.0269

PVTMFD-010

0.0778

PVTMFD-088

0.0884

PVTMFD-166

0.0784

PVTMFD-011

0.1056

PVTMFD-089

0.0178

PVTMFD-167

0.0733

PVTMFD-012

0.0014

PVTMFD-090

0.0798

PVTMFD-168

0.0000

PVTMFD-013

0.0807

PVTMFD-091

0.0086

PVTMFD-169

0.0195

PVTMFD-014

0.0009

PVTMFD-092

0.0728

PSMFD-001

0.0776

PVTMFD-015

0.0845

PVTMFD-093

0.0082

PSMFD-002

0.0495

PVTMFD-016

0.0188

PVTMFD-094

0.0222

PSMFD-003

0.4543

PVTMFD-017

0.2535

PVTMFD-095

0.0255

PSMFD-004

0.3597

PVTMFD-018

0.1659

PVTMFD-096

0.0225

PSMFD-005

0.4543

PVTMFD-019

0.1659

PVTMFD-097

0.0318

PSMFD-006

0.0845

PVTMFD-020

0.1659

PVTMFD-098

0.2655

PSMFD-007

0.0846

PVTMFD-021

0.1659

PVTMFD-099

0.0888

PSMFD-008

0.0845

PVTMFD-022

0.1659

PVTMFD-100

0.0049

PSMFD-009

0.0474

PVTMFD-023

0.2515

PVTMFD-101

0.0810

PSMFD-010

0.4371

PVTMFD-024

0.2498

PVTMFD-102

0.0188

PSMFD-011

0.4021

PVTMFD-025

0.2544

PVTMFD-103

0.0688

PSMFD-012

0.4491

PVTMFD-026

0.2572

PVTMFD-104

0.0690

PSMFD-013

0.4491

PVTMFD-027

0.1663

PVTMFD-105

0.0228

PSMFD-014

0.4231

PVTMFD-028

0.1666

PVTMFD-106

0.4612

PSMFD-015

0.4577

PVTMFD-029

0.1659

PVTMFD-107

0.0000

PSMFD-016

0.0740

PVTMFD-030

0.2482

PVTMFD-108

0.0717

PSMFD-017

0.0067

PVTMFD-031

0.1659

PVTMFD-109

0.0020

PSMFD-018

0.0686

PVTMFD-032

0.1659

PVTMFD-110

0.0746

PSMFD-019

0.0075

PVTMFD-033

0.2558

PVTMFD-111

0.0100

PSMFD-020

0.3728

PVTMFD-034

0.1659

PVTMFD-112

0.0364

PSMFD-021

0.3914

PVTMFD-035

0.2609

PVTMFD-113

0.0667

PSMFD-022

0.4575

PVTMFD-036

0.2587

PVTMFD-114

0.0127

PSMFD-023

0.0363

PVTMFD-037

0.0029

PVTMFD-115

0.0127

PSMFD-024

0.0667

PVTMFD-038

0.1044

PVTMFD-116

0.0000

PSMFD-025

0.0748

PVTMFD-039

0.1044

PVTMFD-117

0.0000

PSMFD-026

0.0113

PVTMFD-040

0.1665

PVTMFD-118

0.0741

PSMFD-027

0.0278

PVTMFD-041

0.1672

PVTMFD-119

0.0000

PSMFD-028

0.0363

PVTMFD-042

0.2591

PVTMFD-120

0.0061

PSMFD-029

0.0758

PVTMFD-043

0.0913

PVTMFD-121

0.0695

PSMFD-030

0.0678

PVTMFD-044

0.0290

PVTMFD-122

0.0011

PSMFD-031

0.0251

PVTMFD-045

0.1660

PVTMFD-123

0.0125

PSMFD-032

0.1313

PVTMFD-046

0.2535

PVTMFD-124

0.0107

PSMFD-033

0.0747

PVTMFD-047

0.1685

PVTMFD-125

0.0084

PSMFD-034

0.0144

PVTMFD-048

0.1659

PVTMFD-126

0.0678

PSMFD-035

0.0613

PVTMFD-049

0.1661

PVTMFD-127

0.0073

PSMFD-036

0.0739

PVTMFD-050

0.1607

PVTMFD-128

0.0120

PSMFD-037

0.0022

PVTMFD-051

0.0864

PVTMFD-129

0.0039

PSMFD-038

0.4096

PVTMFD-052

0.0065

PVTMFD-130

0.0126

PSMFD-039

0.0606

PVTMFD-053

0.0070

PVTMFD-131

0.0797

PSMFD-040

0.0283

PVTMFD-054

0.0793

PVTMFD-132

0.0265

PSMFD-041

0.0783

PVTMFD-055

0.1660

PVTMFD-133

0.0182

PSMFD-042

0.0297

PVTMFD-056

0.2522

PVTMFD-134

0.0929

PSMFD-043

0.0305

PVTMFD-057

0.1664

PVTMFD-135

0.0928

PSMFD-044

0.0284

PVTMFD-058

0.1664

PVTMFD-136

0.3594

PSMFD-045

0.0327

PVTMFD-059

0.0861

PVTMFD-137

0.3610

PSMFD-046

0.0779

PVTMFD-060

0.0079

PVTMFD-138

0.3599

PSMFD-047

0.0319

PVTMFD-061

0.0089

PVTMFD-139

0.4059

PSMFD-048

0.0237

PVTMFD-062

0.1065

PVTMFD-140

0.3530

PSMFD-049

0.0736

PVTMFD-063

0.1065

PVTMFD-141

0.4452

PSMFD-050

0.0736

PVTMFD-064

0.0145

PVTMFD-142

0.3637

PSMFD-051

0.0804

PVTMFD-065

0.0847

PVTMFD-143

0.0162

PSMFD-052

0.0257

PVTMFD-066

0.4604

PVTMFD-144

0.0745

PSMFD-053

0.4619

PVTMFD-067

0.0782

PVTMFD-145

0.0249

PSMFD-054

0.3657

PVTMFD-068

0.0031

PVTMFD-146

0.1235

PSMFD-055

0.0403

PVTMFD-069

0.0676

PVTMFD-147

0.1235

PSMFD-056

0.0806

PVTMFD-070

0.0011

PVTMFD-148

0.0778

PSMFD-057

0.0252

PVTMFD-071

0.0042

PVTMFD-149

0.0084

PSMFD-058

0.0254

PVTMFD-072

0.0079

PVTMFD-150

0.0803

PSMFD-059

0.4540

PVTMFD-073

0.0015

PVTMFD-151

0.0053

PSMFD-060

0.3629

PVTMFD-074

0.0015

PVTMFD-152

0.0013

PSMFD-061

0.0180

PVTMFD-075

0.0660

PVTMFD-153

0.0067

PSMFD-062

0.3595

PVTMFD-076

0.0828

PVTMFD-154

0.0455

PSMFD-063

0.4601

PVTMFD-077

0.0050

PVTMFD-155

0.0805

PSMFD-064

0.0703

PVTMFD-078

0.0035

PVTMFD-156

-0.0024

PSMFD-065

0.0055

Average of CAGR PVTMFD

0.113

Average of CAGR PSMFD

0.158

Maximum CAGR PVTMFD

0.464

Maximum CAGR PSMFD

0.461

Minimum CAGR of PVTMFD

-0.002

Minimum CAGR of PSMFD

0.002

Source: CAGR of private and public sector mutual funds Debt schemes.

Note 1: First, third and fifth column indicates the codes (for private sector schemes we coded as PVTMFD-001to PVTMFD -169 and for public sector schemes coded as PSMFD-001 to PSMFD-065).

Note 2: Second, fourth and sixth column of the table indicate CAGR of the schemes for the study period.

 

Table 2 Tests of Normality of Private and Public Sector Mutual Fund Debt Schemes.

Tests of Normality

 

Kolmogorov-Smirnova

Shapiro-Wilk

Statistic

df

Sig.

Statistic

df

Sig.

CAGR

.247

234

.000

.791

234

.000

Note: we have computed test of normality by using SPSS 22 software.

 

Table 3 Mann-Whitney Test Result of Private and Public Sector Mutual Fund DebtSchemes

Test Statisticsa

 

CAGR

Mann-Whitney U

4704.000

Wilcoxon W

19069.000

Z

-1.700

Asymp. Sig. (2-tailed)

.089

 

 

Table 4 Performance Measures of Private and Public Sector Mutual Fund Debt Schemes:

Schemes

SM

TM

JM

SoM

Schemes

SM

TM

JM

SoM

PVTMFD-001

-0.73

-0.27

-0.02

-0.07

PVTMFD-118

0.38

0.07

0.01

0.02

PVTMFD-002

0.05

0.00

0.01

0.01

PVTMFD-119

0.00

0.00

-0.07

-0.18

PVTMFD-003

-3.03

-0.91

-0.06

-0.16

PVTMFD-120

-17.78

-61.76

-0.06

-0.16

PVTMFD-004

0.26

0.05

9.35

18.63

PVTMFD-121

0.12

0.02

0.00

0.01

PVTMFD-005

0.26

0.05

8.55

16.98

PVTMFD-122

-5.87

0.84

-0.07

-0.17

PVTMFD-006

0.25

0.05

8.52

16.92

PVTMFD-123

-0.71

0.09

-0.06

-0.14

PVTMFD-007

0.26

0.05

8.56

17.01

PVTMFD-124

-16.54

-13.58

-0.06

-0.15

PVTMFD-008

0.25

0.05

8.54

16.97

PVTMFD-125

-1.46

0.17

-0.06

-0.15

PVTMFD-009

0.26

0.05

9.43

18.78

PVTMFD-126

0.03

-0.01

0.00

0.00

PVTMFD-010

0.81

0.08

0.01

0.03

PVTMFD-127

-0.79

0.62

-0.06

-0.15

PVTMFD-011

0.19

0.02

0.15

0.21

PVTMFD-128

-1.64

0.21

-0.06

-0.14

PVTMFD-012

-15.76

28.58

-0.07

-0.17

PVTMFD-129

-0.79

11.47

-0.06

-0.16

PVTMFD-013

0.38

0.05

0.02

0.04

PVTMFD-130

-1.48

0.26

-0.06

-0.14

PVTMFD-014

-2.16

-1.37

-0.07

-0.17

PVTMFD-131

0.70

0.13

0.01

0.03

PVTMFD-015

0.40

0.03

0.03

0.05

PVTMFD-132

-1.19

0.41

-0.04

-0.11

PVTMFD-016

-1.37

-0.14

-0.04

-0.13

PVTMFD-133

-1.50

-1.02

-0.05

-0.13

PVTMFD-017

0.26

-0.08

0.52

1.73

PVTMFD-134

0.20

-0.06

0.03

0.10

PVTMFD-018

0.23

-0.07

0.40

1.38

PVTMFD-135

0.20

-0.06

0.03

0.10

PVTMFD-019

0.23

-0.07

0.40

1.38

PVTMFD-136

0.26

-0.07

5.10

16.98

PVTMFD-020

0.23

-0.07

0.40

1.38

PVTMFD-137

0.26

-0.07

5.13

17.08

PVTMFD-021

0.23

-0.07

0.40

1.38

PVTMFD-138

0.26

-0.07

5.10

16.99

PVTMFD-022

0.23

-0.07

0.40

1.38

PVTMFD-139

0.26

-0.07

5.62

18.69

PVTMFD-023

0.26

-0.08

0.52

1.72

PVTMFD-140

0.26

-0.07

5.09

16.98

PVTMFD-024

0.26

-0.08

0.52

1.71

PVTMFD-141

0.26

-0.07

5.66

18.80

PVTMFD-025

0.26

-0.08

0.52

1.72

PVTMFD-142

0.26

-0.07

5.25

17.50

PVTMFD-026

0.26

-0.08

0.53

1.74

PVTMFD-143

-1.90

73.74

-0.05

-0.13

PVTMFD-027

0.23

-0.07

0.40

1.39

PVTMFD-144

0.26

-0.13

0.01

0.02

PVTMFD-028

0.23

-0.07

0.40

1.39

PVTMFD-145

-0.08

0.01

-0.04

-0.05

PVTMFD-029

0.23

-0.07

0.40

1.38

PVTMFD-146

0.30

-0.05

0.06

0.23

PVTMFD-030

0.26

-0.07

0.52

1.72

PVTMFD-147

0.30

-0.05

0.06

0.23

PVTMFD-031

0.23

-0.07

0.40

1.38

PVTMFD-148

0.81

0.08

0.01

0.03

PVTMFD-032

0.23

-0.07

0.40

1.38

PVTMFD-149

-3.41

-1.41

-0.06

-0.15

PVTMFD-033

0.26

-0.08

0.53

1.73

PVTMFD-150

0.94

0.08

0.02

0.03

PVTMFD-034

0.23

-0.07

0.40

1.38

PVTMFD-151

-10.64

4.80

-0.06

-0.16

PVTMFD-035

0.26

-0.07

0.53

1.74

PVTMFD-152

-14.97

3.03

-0.07

-0.17

PVTMFD-036

0.26

-0.08

0.53

1.74

PVTMFD-153

-3.60

0.98

-0.06

-0.16

PVTMFD-037

-6.64

1.61

-0.07

-0.17

PVTMFD-154

-0.15

-0.16

-0.01

-0.04

PVTMFD-038

0.29

-0.04

0.03

0.13

PVTMFD-155

0.34

0.02

0.02

0.04

PVTMFD-039

0.29

-0.04

0.03

0.13

PVTMFD-156

-4.07

-0.67

-0.07

-0.18

PVTMFD-040

0.23

-0.03

0.28

1.39

PVTMFD-157

-2.07

-0.62

-0.06

-0.15

PVTMFD-041

0.23

-0.03

0.28

1.39

PVTMFD-158

0.26

0.05

8.55

16.98

PVTMFD-042

0.26

-0.04

0.38

1.67

PVTMFD-159

0.26

0.05

6.23

12.39

PVTMFD-043

0.44

0.03

0.04

0.07

PVTMFD-160

0.26

0.05

8.55

16.98

PVTMFD-044

-0.57

-0.07

-0.03

-0.10

PVTMFD-161

0.26

0.05

8.56

17.01

PVTMFD-045

0.23

-0.03

0.28

1.39

PVTMFD-162

0.26

0.05

9.43

18.78

PVTMFD-046

0.26

-0.04

0.37

1.65

PVTMFD-163

-6.76

-0.45

-0.06

-0.16

PVTMFD-047

0.23

-0.03

0.28

1.39

PVTMFD-164

0.87

0.07

0.02

0.04

PVTMFD-048

0.23

-0.03

0.28

1.38

PVTMFD-165

-0.69

-0.05

-0.03

-0.10

PVTMFD-049

0.23

-0.03

0.26

1.31

PVTMFD-166

0.74

0.09

0.01

0.03

PVTMFD-050

0.23

-0.03

0.27

1.37

PVTMFD-167

0.23

0.04

0.01

0.02

PVTMFD-051

0.40

0.02

0.03

0.05

PVTMFD-168

-51.49

-6.97

-0.07

-0.18

PVTMFD-052

-1.42

-0.11

-0.05

-0.16

PVTMFD-169

-1.59

-0.66

-0.05

-0.12

PVTMFD-053

-1.54

-0.15

-0.05

-0.16

PSMFD-001

0.29

0.08

0.01

0.03

PVTMFD-054

0.61

0.04

0.02

0.03

PSMFD-002

-0.22

-0.03

-0.01

-0.04

PVTMFD-055

0.23

-0.03

0.28

1.38

PSMFD-003

0.26

-0.13

6.17

18.29

PVTMFD-056

0.26

-0.04

0.37

1.63

PSMFD-004

0.26

-0.13

5.72

16.98

PVTMFD-057

0.23

-0.03

0.28

1.39

PSMFD-005

0.26

-0.13

6.17

18.29

PVTMFD-058

0.23

-0.03

0.28

1.39

PSMFD-006

0.32

0.02

0.03

0.05

PVTMFD-059

0.74

0.06

0.02

0.05

PSMFD-007

0.32

0.02

0.03

0.05

PVTMFD-060

-2.66

-0.33

-0.06

-0.15

PSMFD-008

0.32

0.02

0.03

0.05

PVTMFD-061

-2.51

-0.28

-0.06

-0.15

PSMFD-009

-0.47

-0.03

-0.01

-0.05

PVTMFD-062

0.24

-0.03

0.03

0.20

PSMFD-010

0.26

0.18

7.82

18.66

PVTMFD-063

0.24

-0.03

0.03

0.20

PSMFD-011

0.26

0.18

7.79

18.59

PVTMFD-064

-1.47

-0.15

-0.05

-0.14

PSMFD-012

0.26

0.18

7.83

18.68

PVTMFD-065

0.39

0.02

0.03

0.05

PSMFD-013

0.26

0.18

7.83

18.68

PVTMFD-066

0.26

0.05

9.42

18.77

PSMFD-014

0.26

0.18

7.82

18.68

PVTMFD-067

0.72

0.09

0.01

0.03

PSMFD-015

0.26

-0.19

6.47

18.37

PVTMFD-068

-8.17

2.20

-0.06

-0.17

PSMFD-016

0.39

0.07

0.01

0.02

PVTMFD-069

0.02

0.00

0.01

0.00

PSMFD-017

-4.53

-1.99

-0.06

-0.16

PVTMFD-070

-2.08

-4.84

-0.07

-0.17

PSMFD-018

0.07

0.01

0.00

0.00

PVTMFD-071

-3.38

-6.05

-0.06

-0.16

PSMFD-019

-5.36

8.23

-0.06

-0.16

PVTMFD-072

-2.05

1.71

-0.06

-0.15

PSMFD-020

0.26

-0.04

3.79

17.19

PVTMFD-073

-4.63

-0.65

-0.06

-0.17

PSMFD-021

0.26

-0.33

6.43

17.57

PVTMFD-074

-4.19

-0.61

-0.06

-0.17

PSMFD-022

0.26

-0.04

3.98

17.93

PVTMFD-075

-0.03

-0.01

0.00

0.00

PSMFD-023

-0.37

-0.03

-0.01

-0.07

PVTMFD-076

0.28

0.02

0.03

0.04

PSMFD-024

0.00

0.00

0.01

0.00

PVTMFD-077

-2.12

-0.20

-0.06

-0.16

PSMFD-025

0.22

0.01

0.02

0.02

PVTMFD-078

-2.69

-0.28

-0.06

-0.17

PSMFD-026

-1.17

-0.13

-0.05

-0.14

PVTMFD-079

0.28

0.05

0.01

0.01

PSMFD-027

-0.03

0.01

-0.03

-0.02

PVTMFD-080

-42.90

-6.24

-0.07

-0.18

PSMFD-028

-0.37

-0.03

-0.01

-0.07

PVTMFD-081

-718.95

0.00

-0.07

-0.18

PSMFD-029

0.55

0.09

0.01

0.02

PVTMFD-082

-9.38

-5.33

-0.06

-0.16

PSMFD-030

0.03

0.00

0.01

0.00

PVTMFD-083

0.52

0.04

0.01

0.02

PSMFD-031

-1.14

-0.16

-0.04

-0.11

PVTMFD-084

-2.56

1.10

-0.06

-0.15

PSMFD-032

0.31

-0.04

0.08

0.32

PVTMFD-085

-15.92

10.13

-0.07

-0.18

PSMFD-033

0.17

-0.02

0.02

0.16

PVTMFD-086

0.71

0.08

0.01

0.02

PSMFD-034

-1.21

-1.53

-0.05

-0.14

PVTMFD-087

0.31

0.02

0.03

0.05

PSMFD-035

-0.07

-0.03

0.00

-0.01

PVTMFD-088

0.37

0.03

0.03

0.06

PSMFD-036

0.13

0.01

0.02

0.02

PVTMFD-089

-0.82

-0.07

-0.04

-0.13

PSMFD-037

-11.80

48.38

-0.07

-0.17

PVTMFD-090

0.70

0.09

0.01

0.03

PSMFD-038

0.26

-0.04

3.82

17.26

PVTMFD-091

-6.74

-0.94

-0.06

-0.15

PSMFD-039

-0.05

0.01

-0.01

-0.01

PVTMFD-092

0.47

0.06

0.01

0.01

PSMFD-040

-1.77

0.78

-0.04

-0.10

PVTMFD-093

-6.94

-1.01

-0.06

-0.15

PSMFD-041

0.22

0.01

0.03

0.03

PVTMFD-094

-0.55

-0.05

-0.03

-0.11

PSMFD-042

-0.83

-0.07

-0.03

-0.10

PVTMFD-095

-1.02

-0.28

-0.04

-0.11

PSMFD-043

-0.85

-0.07

-0.03

-0.09

PVTMFD-096

-1.16

-0.11

-0.04

-0.12

PSMFD-044

-0.90

-0.07

-0.03

-0.10

PVTMFD-097

-0.44

-0.03

-0.02

-0.09

PSMFD-045

-0.81

-0.06

-0.03

-0.09

PVTMFD-098

0.27

-0.08

0.54

1.75

PSMFD-046

0.21

0.01

0.03

0.03

PVTMFD-099

0.97

0.09

0.03

0.06

PSMFD-047

-0.83

-0.07

-0.03

-0.09

PVTMFD-100

-1.43

-0.17

-0.06

-0.16

PSMFD-048

-1.20

-0.12

-0.04

-0.11

PVTMFD-101

0.30

0.02

0.03

0.04

PSMFD-049

0.18

0.01

0.01

0.02

PVTMFD-102

-1.37

-0.14

-0.04

-0.13

PSMFD-050

0.17

0.01

0.01

0.02

PVTMFD-103

0.05

0.00

0.01

0.00

PSMFD-051

0.31

0.07

0.02

0.04

PVTMFD-104

0.06

0.00

0.01

0.01

PSMFD-052

-1.06

-0.60

-0.04

-0.11

PVTMFD-105

-1.67

-0.14

-0.04

-0.12

PSMFD-053

0.26

-0.07

5.65

18.74

PVTMFD-106

0.26

-0.03

3.50

18.83

PSMFD-054

0.26

-0.07

5.10

16.97

PVTMFD-107

-6.29

-1.05

-0.07

-0.18

PSMFD-055

-0.37

0.13

-0.03

-0.07

PVTMFD-108

0.19

0.04

0.01

0.01

PSMFD-056

0.22

-0.08

0.01

0.04

PVTMFD-109

-14.47

-3.04

-0.07

-0.17

PSMFD-057

-0.56

0.14

-0.04

-0.10

PVTMFD-110

0.22

0.01

0.02

0.02

PSMFD-058

-0.55

0.10

-0.05

-0.10

PVTMFD-111

-1.04

-0.10

-0.05

-0.15

PSMFD-059

0.26

-0.07

5.65

18.74

PVTMFD-112

-0.25

-0.03

-0.01

-0.07

PSMFD-060

0.26

-0.07

5.10

16.97

PVTMFD-113

-0.01

0.00

0.01

0.00

PSMFD-061

-0.78

-0.11

-0.04

-0.12

PVTMFD-114

-1.02

-0.09

-0.04

-0.14

PSMFD-062

0.26

0.05

8.55

16.98

PVTMFD-115

-1.09

-0.09

-0.04

-0.14

PSMFD-063

0.26

0.05

9.40

18.73

PVTMFD-116

0.00

0.00

-0.07

-0.18

PSMFD-064

0.19

-0.18

0.00

0.01

PVTMFD-117

0.00

0.00

-0.07

-0.18

PSMFD-065

-4.58

7.27

-0.06

-0.16

Source: Computed performance measures of private and public sector mutual funds Debt schemes.

Note 1: First and sixth column indicates the codes (For private sector schemes coded as PVTMFD-001to PVTMFD -169 and for public sector schemes coded as PSMFD-001 to PSMFD-065).

Note 2: Second and seventh column indicates Sharpe measure (SM) of schemes.

Note 3: Third and eighth column indicates Treynor measure (TM) of schemes.

Note 4: Fourth and ninth column indicates Jensen measure (JM) of schemes.

Note 5: Fifth and tenth column indicates Sortino measure (SoM) of schemes for the study period.

 

Table 5 Tests of Normality of Private and Public Sector Mutual Fund Debt Schemes.

 

Tests of Normality

 

Kolmogorov-Smirnova

Shapiro-Wilk

Statistic

df

Sig.

Statistic

df

Sig.

SM

.454

234

.000

.067

234

.000

TM

.422

234

.000

.183

234

.000

JM

.430

234

.000

.516

234

.000

SoM

.416

234

.000

.515

234

.000

 

Table 6 Mann-Whitney Test of Private and Public Sector Mutual Fund Debt Schemes.

 

Test Statisticsa

 

SM

TM

JM

SoM

Mann-Whitney U

5311.000

4930.000

4779.000

4714.000

Wilcoxon W

19676.000

19295.000

19144.000

19079.000

Z

-.391

-1.213

-1.538

-1.678

Asymp. Sig. (2-tailed)

.696

.225

.124

.093

 

Table 7 Comparison of mutual fund return and Benchmark Return of Private and Public Sector Mutual Fund Debt Schemes:

 

 

PVTMFD

PUBMFD

Above Average Benchmark

99

(59%)

38

(58%)

Below Average Benchmark

70

(41%)

27

(42%)

 Total schemes

169

65

 

 

 

Table 8 Chi square test of Private and Public sector Mutual Fund Debt Schemes.

 

Chi-Square Tests

 

Value

df

Asymp. Sig. (2-sided)

Exact Sig. (2-sided)

Exact Sig. (1-sided)

Pearson Chi-Square

.000

1

.987

 

 

Continuity Correction

.000

1

1.000

 

 

Likelihood Ratio

.000

1

.987

 

 

Fisher's Exact Test

 

 

 

1.000

.551

N of Valid Cases

234

 

 

 

 

 

                                                                             ************