Historical Fall in Crude Oil Prices and Volatility Spillover to Selected Asian Stock Markets

Dr. Saif Siddiqui

Assistant Professor Centre for Management Studies Jamia Millia Islamia – A Central University, Jamia Nagar, New Delhi

Ms Arushi Gaur

Research Scholar Centre for Management Studies Jamia Millia Islamia – A Central University, Jamia Nagar, New Delhi

Abstract

Oil industry recently faced the deepest downturn. This plunging price was first observed in June 2014 and it moved further down. This change affected the investment pattern of many companies and leads to a decline in corporate margins and influence investments in stock markets. Keeping in view this important relationship, here, we propose to study the movement of crude oil prices and volatility spill over to select major stock markets of Asia.

We have taken daily data for the period from June 01, 2014 to August 31, 2016 for the major Asian countries (China, Malaysia, Indonesia, South Korea, Singapore, Japan and India). One major stock index of each country has been taken to represent its stock market. We used GARCH (1,1) model to forecast volatility. Beside, doing descriptive statistics and correlation test, we put granger causality test to identify spill over of volatility.

Preliminary results suggested that apart from different degrees of correlations, return spill overs between India and its Asian counterparts are found to be significant and bi-directional. We found that there are some markets from where there is significant flow of volatility. Affect of historic crude price movement on stock markets is also significant.

Keywords: Crude Oil, Stock Market, Garch Model, Causality, Correlation

Introduction

Oil is the fuel that forces world economies. The sharp increase in the price of oil and other energy products were the most severe supply shocks hitting the world economies since World War II. An oil shock may have a different impact on each of the countries due to various factors such as their relative position as oil importers or exporters, different tax structures etc.

In context to Asian countries, changes in oil prices are one of the most important factors which impact the overall inflation of the countries. The major producers of oil are Saudi Arabia, United States, Russia, China, Canada, Iran, UAE, Iran whereas the major consumers are United States, China, Japan, India, South Korea, Germany, Italy, France, Netherland and Singapore. This mismatch between the producers and consumers drives international trade in oil. Due to the rising oil demand in countries like China and India, and production cuts by OPEC countries, the price of oil rose significantly from 1999 to mid 2008 from \$25 to \$150 a barrel. In July 2008, it reached its peak of US \$147.27 a barrel.

Conceptual Framework

The financial crises of 2007-2008 affected the oil price and underwent a significant decrease after July 11, 2008. On December 23,2008, it dropped below \$30.28 per barrel which is lowest since financial crises. During the economic recovery, for about three and a half year the price remained from \$90 to \$120 a barrel. In mid of 2014, from a peak of \$115 per barrel in June 2014 oil price started declining due to a significant increase in oil production in USA, and declining demand in other countries. By February 3, 2016 the price of oil was below \$30 a barrel which is almost a drop 75% since mid-2014. This change affected the world economies to great extent. Many countries faced with the problem of unemployment. In USA 250,000 oil workersroughly half of them lost their jobs. This change was also observed in stock market. The earnings are down for companies that made record profits in recent years whereas many companies have gone bankrupt. Thus it affected the investment in stock markets. This study is in the continuation of research based on the issue of fall in oil prices and its impact on stock market returns.

Review of Literature

S.No	Title of Paper	Authors	Year	Indexes and time period [*] considered	Data and	Conclusions-
	_				Methodology	Comments
					Used	
1	Oil Price Risk and the	Faff and	1999	24 Australian industry equity returns, 14	Arbitrage Pricing	Findings were that
	Australian Stock Market	Brailsford,		years	Theory(APT),	the oil price factor
					Capital Asset	effects the Australian
					Pricing	industrial market
					Model (CAPM)	
2	Autoregressive	Beck	2001	20 commodities, Consumer Price Index,	GARCH	Results concluded
	conditional			Producer Price Index, Wholesale Price		that ARCH term was
	neteroscedasticity in			Index, 1/1 years		significant on
	commodity spot prices					storable
2	Modeling the conditional	Fong and	2002	Future returns of Goldman Seebs	GADCH(1.1)	Pagima shift in
3	volatility of commodity	Folig and	2002	Commodity Index(GSCI) 5 years	UARCII(1,1)	conditional mean and
	index futures as a regime	500		commonly mack(05CI), 5 years		volatility
	switching process					volutility
4	Oil Price Shocks and	Maghvereh.	2004	Weighted stock market indices of	VAR model	With VAR model, it
-	Emerging Stock Markets:	,		Argentina, Brazil, Chile, China, Czech		was found that the
	A Generalized VAR			Republic, Egypt, Greece, India, Indonesia,		stock market in these
	Approach			Jordan, Korea, Malaysia, Mexico,		economies do not
				Morocco, Hungary, Pakistan, Philippines,		effect crude oil
				Poland, South Africa, Taiwan, Thailand,		markets
				and Turkey, 6 years		
5	Oil Price Risk and	Basher and	2006	Morgan Stanley Capital International	Capital Asset	Evidences were
	Emerging Stock Markets	Sadorsky,		(MSCI) world index and Stock market	Pricing Model (CADM)	found that shows the
				returns of 21 countries, 11 years	Model (CAPNI)	changes on stock
						price returns in
						emerging markets
6	Oil Prices and the Stock	Henriques	2007	WilderHill Clean Energy Index (ECO), the	Vector Auto -	It was observed that
	Prices of	and		Arca Technology Index (PSE), and oil	regression (VAR)	the prices of stock
	Alternative Energy	Sadorsky,		prices, 7 years		and oil Granger
	Companies					cause the stock prices
						of alternative energy
						companies
7	Commodity price cycles	Reitz and	2007	US-dollar market prices of commodities-	STAR-GARCH	The model indicates
	and heterogeneous	Westerhoff		cotton, lead, rice, soybeans, sugar, and		that their influence
	Speculators: A STAK			zinc, 30 yrs		positively depends
	GARCH model.					between the price of
						commodity and its
						long- run equilibrium
8	Short-term Predictability	Ramirez,	2008	International crude oil prices, 20 years	Auto-regressive	In long run crude oil
	of Crude Oil Markets:	Alvarez and		1 / 5	Fractionally	prices were efficient
	A Detrended	Rodriguez,			Integrated	but in short run,
	Fluctuation Analysis	_			Moving Average	inefficiency was
	Approach				(ARFIMA)	found.

9	Crude Oil and Stock Markets: Stability, Instability, and Bubbles	Miller and Ratti,	2008	Returns of S&P 500, oil prices., 37 years	Vector Error Correction Model (VECM)	There was Long run relationship between the stock prices of OECD countries and world oil prices
10	Relationships between Oil Price Shocks and Stock Market: An Empirical Analysis from China	Cong, Wei, Jiao and Fan,	2008	Composite index of Shanghai stock market and Shenzhen stock market, 10 years	Multivariate Vector Auto - regression	It was observed that oil prices have not shown any effect on Chinese stock market
11	The Impact of Oil Price Shocks on the U.S. Stock Market	Kilian and Park,	2009	US stock market return, 34 years	VAR model	The results proved that the US stock market return effects
12	Dynamic correlation between stock market and oil prices: The case of oil -importing and oil-exporting countries	Filis, Degiannakis and Floros,	2009	S&P/TSX 60, MXICP 35, Bovespa Index, Dow Jones Industrial , DAX 30 and AEX General Index. 22 years	GARCH model	It was observed that Oil prices have significant impact on stock market prices, except 2008, year of global financial crisis, wherein oil prices showed positive correlation with stock markets
13	The Effects of Crude Oil Shocks on Stock Market Shifts Behav ior: A Regime Switching Approach	Aloui and Jammazi,	2009	Stock returns of Nikkei225, FTSE100 and CAC40, 19 years	Markov- switching EGARCH model	It was observed that rises in oil price had significant role in determining both ie in probability of transition across regimes and the volatility of stock returns.
14	Exploring Autocorrelation in NSE and NASDAQ during the Recent Financial Crisis Period	Siddiqui and Seth	2011	NSE and NASDAQ, 4 years	VAR Model	It was found that there is no long term integration between oil prices and exchange rate prices
15	Crude oil shocks and stock markets: A panel threshold co-integration approach	Zhu, Li and Yu,	2011	Norway, Sweden, Poland, Turkey, Brazil, India, Chile, China, Israel, Slovenia and South Africa, USA, UK, Mexico, 14 years	Threshold co integration, threshold VAR and Granger Causality model	It was found that there was Co -integration, error correction and bidirectional causality between crude oil prices and stock returns
16	Does crude oil move stock markets in Europe? A sector investigation	Arouri,	2011	DJ Stoxx 600 and European sector indices- Automobile & Parts, Financials, Food & Beverages, Oil & Gas, Health Care, Industrials, Basic Materials, Personal & Household Goods, Consumer Services, Technology, Telecommunications, and Utilities, 12 years	GARCH model and the quasi maximum likelihood (QML) method	The results concluded that the strength of relationship between oil and stock prices varies across different sectors
17	Association between Crude Price and Stock Indices: Empirical Evidence from Bombay Stock Exchange	Bhunia,	2012	BSE 500, BSE 200, BSE 100, 10 years	Johansen's Co - integration test and VECM	It was observed that the three indexes from BSE and crude oil prices are co integrated but having only one way causality from all indexes to crude oil prices.
18	Crude Oil Price Velocity and Stock Market Ripple: A Comparative Study Of BSE With NYSE and LSE	Sharma and Khanna,	2012	Sensex, DJIA and FTSE 100, spot prices of oil , 3 years	correlation, regression and coefficient of determination	It was found that the changes in oil price have significant effect on performance of stock returns.

19	How does oil price volatility affect non -energy commodity markets?	Ji and Far	(2012)	US	dollar index, crude oil prices, 2	yrs	Bivariate EGARCH		It was observed that significant volatility spillover effect was there of crude oil on non energy commodity market.	
20	Nonlinear Analysis among Crude Oil Prices, Stock Markets' Return and Macroeconomic Variables	Naifar and Dohaimar	1 2013 1,	OPH Coo Year	EC Oil spot markets and Gulf peration Council (GCC),S&P 50 rs	00, 7	Markov Switc Models and Copula Mode	ching Is	The relationship between Gulf Corporation Council stock market returns and OPEC oil market volatility was found to be regime dependent. It was also observed that inflation rate and short term interest rates were also dependent on crude oil prices	
21	On the links between stock and commodity markets' volatility.	Creti, Joëts and Mignon	(2013)	Agg Con Reg inde 25 c ener meta agrid	regate commodity price index, modity Research Bureau (CRB arding the equity market, S&P 5 ex. commodities divided into sectors rgy, precious metals, non-ferrous als, food, oleaginous, exotic, culture and livestock,10 yrs	9) index. 500 5 - 5	GARCH (DC	C)	There exist a correlation between commodity market and stock market. It was observed Stock Market as highly volatile since the financial crises of 2007-2008	
22	The Impact of Oil Price Shoc on the Stock Market Return a	cks Kar and Rat	ng, 2 ti and	014	Weighted average of NYSE, AMEX, and Nasdaq stocks	GARCI and stru	H (1,1) model actural VAR	Oil p assoc	prices were found to be ciated with the stock	
	Volatility Relationship	You	on,		and oil prices, 14 years	model		mark	et volatility and returns	
23	Modelling dynamic depender between crude oil prices and Asia-Pacific stock market ret	hic dependence Zhu, Li I prices and And Li, k market returns.		014	S&P/ASX 200, Shanghai composite,Hang Seng, BSE National, Jakarta SE composite,Nikkei 225, Kospi, Kuala Lumpur Composite, Strait Times, SE weighted, 12 years	AR(p)-(1)-t mo	GARCH (1, del	It wa was a crude pacif	is concluded that there a weak relation between e oil prices and Asia - fic stock markets	
24	Co-movement of Internationa Crude Oil Price and Indian S Market: Evidences from	al Gho tock and Kar	Ghosh 2014 and Kanjilal,		SENSEX, exchange rate and international crude oil price , 8 years		odel	It wa move crude	as observed that the ement of international e oil prices had an	
25	Nonlinear Cointegration Tests Forecasting excess Stock Returns with Crude Oil Market Data		ns Liu, Ma 201 and Wang,		Return of S&P 500 and oil price, 37 years		Time-varying Parameter (TVP)		impact on stock prices Apart from traditional predictors, oil prices effects the forecasting of stock market prices	
26	The Impact of Oil Prices on t Exchange Rate in South Afric	act of Oil Prices on the Kin an e Rate in South Africa. Couraș		2014)	Nominal exchange rate against the US dollar, Brent crude oil prices and South African interest rate, 10 yrs	GARCI and CG	H, EGARCH, ARCH	The there volat wher there Agric futur	results concluded that e is a high persistence of tility among the indices reas Leverage Effect is e in Energy Spot, cultural Spot and Metal re.	
27	Forecasting Volatility in Commodity Market: Application of Select GARCH Models.		diqui 2 diqui	015	Indian Metal, Energy and Agriculture index, 10 years	GARCI and CG	H, EGARCH, ARCH	It wa was a volat Leve Ener Spot	as observed that there a high persistence of tility among the indices. erage Effect was there in gy Spot, Agricultural and Metal future	

Research Methodology

Research Methodology is presented as under:

Objectives

Objectives are put as follows:

- 1. To ascertain the correlation among oil price and other indices
- 2. To assess the direction of causality between oil price and other indices
- 3. To forecast volatility oil price and other indices

Data

We have taken daily data for the period from June 01, 2014 to August 31, 2016 for the major Asian countries (China, Malaysia, Indonesia, South Korea, Singapore, Japan and India). One major stock index of each country has been taken to represent its stock market i.e. for China(SSE COMPOSIE), Malaysia(FTSE),Indonesia (JKSE), South Korea(KOSPI), Singapore(STI index), Japan(NIKKI 225) and India (S&P BSE). This data were taken from Yahoo Finance. We have also taken historical crude oil prices from Investing.com.

Tools

We used GARCH (1,1) model to forecast volatility and to

develop residual series. Beside, doing descriptive statistics and correlation test, we put granger causality test to identify spill over of volatility.

Hypotheses

In order to meet the objectives following Null Hypotheses are proposed:

H01: There is no correlation among oil price and other indices

H02: There is no causality between price and other indices.

H03: There is no volatility persistence in oil price and other indices

Analysis

Analysis is presented as under:

Descriptive Statistics

With the help of descriptive statistics we are describing the various features of the oil price and other indices. Here, we have taken indices of China(SSE COMPOSIE), Malaysia(FTSE),Indonesia(JKSE), South Korea(KOSPI), Singapore(STI index), Japan(NIKKI 225) and India (S&P BSE). It helps in summarizing a sample's detail. Following table shows the result of descriptive statistics of the variables.

	Descriptive Statistics											
	CHINA INDIA INDONESIA JAPAN MALAYSIA SINGAPORE SOUTH						SOUTH	OIL				
							KOREA					
Mean	0.00077	0.00023	0.00020	0.00018	-0.00022	0.00023	2.31E-05	-0.00148				
Std. Dev.	0.02026	0.00958	0.00934	0.01498	0.00639	0.00958	0.00757	0.029798				
Skewness	-1.05922	-0.6612	-0.35327	-0.17323	-0.20914	-0.66116	-0.25359	-0.61007				
Jarque-Bera	452.325	286.597	165.970	411.093	68.0276	286.597	74.1507	2261.178				
Probability	0	0	0	0	0	0	0	0				
Observation	555	555	555	555	555	555	555	555				

TABLE 01Descriptive Statistics

Descriptive Statistics means describing the data in quantitative terms. It summaries about the sample and the observation we have made. Here there are 4440 observations (555*8) of China, India, Indonesia, Japan, Malaysia, Singapore, South Korea and crude oil prices. FTSE is least volatile as compared to other indices as the standard deviation is least with .639 per cent and crude oil price is considered to be highest volatile as its standard deviation is 2.979 per cent. As Skewness measures the asymmetry of the probability distribution of variables. Here all variables are negatively skewed. Jarque- bera test is used

to check the normality of the distribution. Hypothesis of normality is rejected here, in all the cases.

Correlation Test

In statistical terms, correlation measures how two variables move in relation with each other. Table 3 provides summary of the correlation among China(SSE COMPOSIE), Malaysia (FTSE),Indonesia(JKSE), South Korea(KOSPI), Singapore(STI index), Japan(NIKKI 225) and India (S&P BSE).

CORRELATION									
	CHINA	INDIA	INDONESIA	JAPAN	MALAYSIA	OIL	SINGAPORE	SOUTH KOREA	
CHINA	1.0000	0.0447	-0.0064	-0.0921	-0.0352	0.0334	0.0447	0.0501	
INDIA	0.0447	1.0000	0.0145	0.2094	0.0710	-0.0623	1.0000	0.1415	
INDONESIA	-0.0064	0.0145	1.0000	0.0857	0.0170	-0.0384	0.0145	-0.0492	
JAPAN	-0.0921	0.2094	0.0857	1.0000	0.0544	0.0925	0.2094	0.0274	
MALAYSIA	-0.0352	0.0710	0.0169	0.0544	1.0000	-0.0114	0.0710	0.2033	
OIL	0.0334	-0.0623	-0.0384	0.0925	-0.0114	1.0000	-0.0623	-0.0089	
SINGAPORE	0.0447	1.0000	0.0145	0.2094	0.0710	-0.0623	1.0000	0.1415	
SOUTH	0.0501	0.1415	-0.0492	0.0274	0.2033	-0.0090	0.1415	1.0000	
KOREA									

TABLE 02 CORRELATION

Correlation is a statistical tool which measures the fluctuations between two or more variables. The value of correlation can be positive or negative. There is a positive correlation when an increase in one variable, increases the other variable. Here, values of correlation are ranging from - 0.0921 to 1 which means they are negatively and positively correlated with each other.

GARCH Model

Past variances are considered to explain the future variances under this model. The result of GARCH model reflected by mean and variance equation are presented in Table 3

	GARCH MODEL										
	CHINA	INDIA	JAPAN	INDONESIA	SINGAPORE	MALAYSIA	SOUTH KORIA	OIL			
	GARCH										
С	0.001237	0.000319	0.000656	0.000334	0.000319	-0.000158	8.84E-05	0.001410			
	(0.0276)	(0.4530)	(0.2391)	(0.3978)	(0.4530)	(0.5047)	(0.7810)	(0.1299)			
	•	•		Varianc	e Equation		•				
С	1.44E-06	6.64E-06	7.34E-06	3.46E-06	6.64E-06	1.41E-06	3.33E-06	5.11E-06			
	(0.0784)	(0.1439)	(0.0006)	(0.0049)	(0.1439)	(0.0037)	(0.0169)	0.0351			
Α	0.080304	0.039828	0.153157	0.070067	0.039828	0.118201	0.075258	0.095205			
	(0.0000)	(0.1126)	(0.0000)	(0.0001)	(0.1126)	(0.0003)	(0.0052)	(0.0000)			
В	0.921710	0.887800	0.827264	0.889909	0.887800	0.849882	0.867303	0.909729			
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)			

TABLE 03

In the table 3 Alpha (α) indicates the ARCH affect and Beta (β) indicates the GARCH affect.

In all cases ie oil prices and other indices, the value of probability of GARCH coefficient (β) is 0.000, which is less than the critical value 0.05. Thus GARCH is significant for oil prices and other indices which mean that past deviation in values can affect the values in future.

Granger Causality Test

This test involves examining whether lagged values of one series have significant explanatory power for another series. They have null hypotheses of no granger causality. The results of this test are summarized in Table 4, and it indicates whether there exists significant Granger Causality and if it exists, then in which direction such causality exists between oil returns and stock returns

Granger Causality Test								
Basis	Null Hypothesis	Obs	F-Statistic	Prob.				
	INDIA does not Granger Cause CHINA	555	0.06688	0.7960				
	INDONESIA does not Granger Cause CHINA		1.85951	0.1733				
CUDIA	JAPAN does not Granger Cause CHINA		6.92928	0.0087				
CHINA	MALAYSIA does not Granger Cause CHINA		0.03612	0.8493				
	SINGAPORE does not Granger Cause CHINA		0.06688	0.7960				
	SOUTH KOREA does not Granger Cause CHINA		0.08496	0.7708				
	OIL does not Granger Cause CHINA		1.52164	0.2179				
	CHINA does not Granger Cause INDIA		0.00058	0.9809				
	INDONESIA does not Granger Cause INDIA		4.30056	0.0386				

TABLE 4Granger Causality Test

	JAPAN does not Granger Cause INDIA	2.89037	0.0897
	MALAYSIA does not Granger Cause INDIA	21.4221	5.E-06
	SINGAPORE does not Granger Cause INDIA	na	
INDIA	SOUTHK does not Granger Cause INDIA	4.11469	0.0430
	OIL does not Granger Cause INDIA	4.45484	0.0353
	CHINA does not Granger Cause INDONESIA	0.11557	0.7340
	INDIA does not Granger Cause INDONESIA	2.74654	0.0981
	JAPAN does not Granger Cause INDONESIA	1.88193	0.1707
INDONESIA	MALAYSIA does not Granger Cause INDONESIA	0.01860	0.8916
	SINGAPORE does not Granger Cause INDONESIA	2.74654	0.0981
	SOUTHK does not Granger Cause INDONESIA	1.03023	0.3106
	OIL does not Granger Cause INDONESIA	0.00161	0.9680
	CHINA does not Granger Cause JAPAN	0.51011	0.4754
	INDIA does not Granger Cause JAPAN	11.9310	0.0006
	INDONESIA does not Granger Cause JAPAN	0.75902	0.3840
JAPAN	MALAYSIA does not Granger Cause JAPAN	0.05684	0.8117
	SINGAPORE does not Granger Cause JAPAN	11.9310	0.0006
	SOUTHK does not Granger Cause JAPAN	5.49902	0.0194
	OIL does not Granger Cause JAPAN	4.33665	0.0378
	CHINA does not Granger Cause MALAYSIA	1.07574	0.3001
	INDIA does not Granger Cause MALAYSIA	0.86460	0.3529
	INDONESIA does not Granger Cause MALAYSIA	1.99501	0.1584
MALAYSIA	JAPAN does not Granger Cause MALAYSIA	0.27766	0.5985
	SINGAPORE does not Granger Cause MALAYSIA	0.86460	0.3529
	SOUTHK does not Granger Cause MALAYSIA	14.2092	0.0002
	OIL does not Granger Cause MALAYSIA	4.40239	0.0364
	CHINA does not Granger Cause SINGAPORE	0.00058	0.9809
	INDIA does not Granger Cause SINGAPORE	Na	
	INDONESIA does not Granger Cause SINGAPORE	4.30056	0.0386
SINGAPORE	JAPAN does not Granger Cause SINGAPORE	2.89037	0.0897
	MALAYSIA does not Granger Cause SINGAPORE	21.4221	5.E-06
	SOUTHK does not Granger Cause SINGAPORE	4.11469	0.0430
	OIL does not Granger Cause SINGAPORE	4.45484	0.0353
	CHINA does not Granger Cause SOUTHK	0.32018	0.5717
	INDIA does not Granger Cause SOUTHK	0.48508	0.4864
SOUTH	INDONESIA does not Granger Cause SOUTHK	1.00569	0.3164
KODEA	JAPAN does not Granger Cause SOUTHK	4.79247	0.0290
NUKLA	MALAYSIA does not Granger Cause SOUTHK	14.8580	0.0001
	SINGAPORE does not Granger Cause SOUTHK	0.48508	0.4864
	OIL does not Granger Cause SOUTHK	2.01632	0.1562
	CHINA does not Granger Cause OIL	0.17780	0.6734
	INDIA does not Granger Cause OIL	1.04198	0.3078
	INDONESIA does not Granger Cause OIL	3.75555	0.0532
OIL	JAPAN does not Granger Cause OIL	0.10664	0.7441
	MALAYSIA does not Granger Cause OIL	5.22161	0.0227
	SINGAPORE does not Granger Cause OIL	1.04198	0.3078
	SOUTHK does not Granger Cause OIL	0.51781	0.4721

The results of tables 4 indicates that null hypothesis is rejected for oil and other indices as all indices and oil does not Granger Cause each other, that is even short-term causality does not exist between oil and index series.

Conclusion

This study is in the continuation of research based on the

issue of fall in oil prices and its impact on stock market returns. For depicting the issue of interrelation and interdependency between the indices, we used Descriptive Statistics, Correlation Analysis. We used GARCH (1,1) model to forecast volatility and to develop residual series. We put granger causality test to identify spill over of volatility.

The key findings of the study are -

FTSE is least volatile as compared to other variables as the standard deviation is least with .639 per cent and crude oil price is considered to be highest volatile as its standard deviation is 2.979 per cent. As values of correlation are ranging from -0.0921 to 1 which means they are negatively and positively correlated with each other. GARCH is significant for oil prices and other indices which mean that past deviation in values can affect the values in future. The results of granger causality

This study is helpful to all individual/ institutional investors, portfolio managers, corporate executives, policy makers and practitioners may draw meaningful conclusions from the findings of this study while operating in stock markets. Our research may help stakeholders in management of their existing portfolios as their portfolio management strategies may be, up to some extent, dependent upon such research work.

References

- Aloui, C. and Jammazi, R. (2009). The effects of crude oil shocks on stock market shifts behavior: A regime switching approach. Energy Economics, 31 (5) ,789-799.
- Arouri, M.E.H. (2011).Does Crude Oil Move Stock Markets in Europe? A Sector Investigation. Economic Modelling, 28(4), 1716-1725.
- Basher, S.A. and Sadorsky, P. (2006). Oil Price Risk and Emerging Stock Markets. Global Finance Journal, 17(2), 224-251.
- Beck, S. (2001). Autoregressive conditional heteroscedasticity in commodity spot prices. Journal of Applied Econometrics, 16(2), 115-132
- Bhunia, A. (2012). Association between Crude Price and Stock Indices: Empirical Evidence from Bombay Stock Exchange. Journal of Economics and Sustainable Development, 3 (3), 25-34.
- Cong, R.G., Wei, Y.M., Jiao, J.L. and Fan, Y. (2008). Relationships between Oil Price Shocks and Stock Market: An Empirical Analysis from China. Energy Policy, 36, (9), 3544–3553.
- Creti, A., Joëts, M. and Mignon, V. (2013). On the links between stock and commodity markets' volatility. Energy Economics, 37, 16-28.
- Faff, R.W. and Brailsford, T.J. (1999). Oil Price Risk and the Australian Stock Market. Journal of Energy Finance & Development, 4,(1),69-87.
- Filis, G., Degiannakis, S. and Floros, C. (2009). Dynamic Correlation between Stock Market and Oil Prices:

The Case of Oil-Importing and Oil-Exporting Countries. International Review of Financial Analysis, 20(3),152-164.

- Fong, W., and See, K. (2002). Modeling the conditional volatility of commodity index futures as a regime switching process. Journal of Applied Econometrics, 16(2), 133-163.
- Ghosh, S. and Kanjilal, K. (2014). Co-movement of International Crude Oil Price and Indian Stock Market: Evidences from Nonlinear Cointegration Tests. Energy Economics, downloaded from http://www. sciencedirect.com/science/article/pii/ S0140988314002710 (accessed on 12th January 2015)
- Henriques, I. and Sadorsky, P. (2007). Oil Prices and the Stock Prices of Alternative Energy Companies. Energy Economics, 30(3), 998-1010.
- Ji, Q., and Fan, Y. (2012). How does oil price volatility affect non-energy commodity markets? Applied Energy, 89(1), 273-280.
- Kang, W., Ratt, R.A. and Yoon, K.H. (2014). The Impact of Oil Price Shocks on the Stock Market Return and Volatility Relationship", downloaded from http://papers. ssrn.com/sol3/papers.cfm?abstract_ id=2522667 (accessed on 15th January 2015)
- Kilian, L. and Park, C. (2009). The Impact of Oil Price Shocks on the U.S. Stock Market. International Economic Review,50 (4),1267-1287.
- Kin, S., and Courage, M. (2014). The Impact of Oil Prices on the Exchange Rate in South Africa. Journal of Economics, 5(2), 193-199.
- Liu,L., Ma, F. and Wang, Y. (2014). Forecasting excess Stock Returns with Crude Oil Market Data. Energy Economics, downloaded from http://www. sciencedirect.com/science/article/pii/S014098831 4003223 (accessed on 12th January 2015)
- Maghyereh, A. (2004). Oil Price Shocks and Emerging Stock Markets: A Generalized VAR Approach. International Journal of Applied Econometrics and Quantitative Studies, 1(2),27-40.
- Miller, J.I. and Ratti, R.A. (2008). Crude Oil and Stock Markets: Stability, instability, and Bubbles. Energy Economics, 31(4),559-568.
- Naifar, N. and Dohaiman, M.S.A. (2013). Nonlinear Analysis among Crude Oil Prices, Stock Markets' Return and Macroeconomic Variables. International Review of Economics & Finance, 27, 416–431.

- Ramirez, J.A., Alvarez, J. and Rodriguez, E. (2008). Shortterm Predictability of Crude Oil Markets: A Detrended Fluctuation Analysis Approach. Energy Economics, 30(5),2645–2656.
- Reitz, S., & Westerhoff, F. (2007). Commodity price cycles and heterogeneous speculators: a STAR–GARCH model. Empirical Economics, 33(2), 231-244.
- Sharma, N. and Khanna, K. (2012).Crude Oil Price Velocity and Stock Market Ripple: A Comparative Study of BSE with NYSE and LSE. International Journal of Exclusive Management Research, 2 (7),1-7.
- Siddiqui, S. and Seth, N. (2011), Exploring Autocorrelation in NSE and NASDAQ during the Recent Financial Crisis Period. Business Analyst, 32 (1), 101-10.
- Siddiqui, S. and Siddiqui, T. A.(2015)., Forecasting Volatility in Commodity Market: Application of Select GARCH Models . Available at SSRN: http://ssrn.com/abstract=2583573.

- Zhu, H.M., Li, R. and Li, S. (2014). Modelling Dynamic Dependence between Crude Oil Prices and Asia-Pacific Stock Market Returns. International Review of Economics and Finance, 29,208–223.
- Zhu, H.M., Li, S.F. and Yu, K. (2011).Crude Oil Shocks and Stock Markets: A Panel Threshold Cointegration Approach. Energy Economics, 33 (5),987-994.

Other Sources

http://www.indexmundi.com/g/r.aspx?v=93&t=10

http://www.nytimes.com/interactive/2016/business/ener gy -environment/oil-prices.html? r=0.

https://in.finance.yahoo.com/

http://www.investing.com/

- http://www.investopedia.com/ask/answers/030315/whydid-oil-prices-drop-so-much-2014.asp
- https://www.weforum.org/agenda/2016/03/what-s-behindthe-drop-in-oil-prices/