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Abstract

In India the history of commodity derivatives market has a long 
history, though a structured and exchange traded derivative trading is 
not more than a decade long. The derivatives market is established for 
the main purpose of hedging the price risk. Since the inception of 
derivatives, the concern of how much to hedge technically called the 
hedge ratio is widely debated and discussed. In present paper, we has 
empirically estimated the hedge ratio using three different 
methodologies viz. OLS, ECM and WAVELET Approach for ten 
agricultural commodities traded on NCDEX platform. The results 
witnessed reveal that wavelet hedge ratio is comparatively larger than 
OLS and ECM, and as we go on increasing the hedging horizon hedge 
ratio increases.    
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 Introduction

Futures market has an important function of hedging the price risk 
faced by producers, traders and other stake holders. The concept of 
Hedging strategy is based on compensating anticipated spot market 
losses with the gains from the futures market. In order to execute 
hedging strategy one has to take opposite position in futures market 
with respect to the position in spot market. 

Most studies in hedging are related to hedge ratio. It is either estimation 
of optimal hedge ratio or optimal hedge ratio derivation based on 
certain objective functions. The derivation is mostly based on 
maximization of expected utility or minimization of return variance. 
The empirical estimation of hedge ratio varies in terms of different 
methodologies used. The present study focuses on estimating the 
optimal hedge ratio based on tradition and new wavelet methodology 
to find out the optimal hedge ratio for different time horizons.

The estimation of optimal hedge ratio generally differs in the 
methodologies used. The most common methodologies vary from 
simple ordinary least square (e.g Ederington, 1979, ; Malliaris & 
Urrutia, 1991; Benet, 1992) to more complex ones like ARCH and 
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GARCH methods (Cecchetti, Cumby, & Figlewski, 1988;  
Baillie & Myers, 1991; Sephton, 1993) , Cointegration 
Method (Ghosh, 1993; Lien & Luo, 1993; Geppert, 1995; 
Chou, & Lee, 1996), the random coefficient method 
(Grammatikos & Saunders, 1983) , cointegration - 
heteroscadestic method (e.g., see Kroner & Sultan, 1993) 
and wavelet method (Lien and Shrestha,20007). 

However, the problem with most of the empirical studies is 
they ignore the hedging horizon which is different for 
different participants in the market. With the increase in 
hedging horizon the optimal hedge ratios tends to increase as 
witnessed by many researchers.  In this article, we have 
decomposed the original time series of futures and spot 
prices into different horizons using wavelet methodology. 
The advantage with wavelets is that the sample size is not 
reduced while matching the hedging horizon and data 
frequency.

Methodology

Hedge ratio is defined as the ratio of value of futures 
contracts to the value of the underlying asset. Optimal hedge 
ratio is the ratio that eliminates or minimizes the price risk. 
While hedging through the identical asset as underlying, the 
number of contracts that are booked to cover the long or 
short positions is equal to the exposure in the underlying 
asset. In such a case it is implicitly set the hedge ratio equal 
to one, which is regarded as optimum.

The optimum hedge ratio (value of futures contracts to the 
value of the underlying asset) is dependent upon the degree 
of correlation between the spot prices and the futures prices. 
For a hedge through futures the optimum hedge ratio is that 
ratio which minimizes the risk of the combined portfolio of 
the underlying and the futures.

If h is the futures contracts booked then the risk of the 
combined portfolio of the underlying asset and the futures is 
given by variance of the return from the portfolio so 
constructed.

Return from the portfolio = h(F -F )-(S -S )=hDF-DS      (1)1 0 1 0

Variance of the portfolio, V = Var(hDF-DS)

For minimization of the variance of the portfolio, dv/dh=0.

Therefore,                       (2)

Where h* = optimal hedge ratio

r = Correlation coefficient of spot and futures price

s , s  = Standard deviations of spot and futures prices s f

respectively.

For the estimation of optimal hedge ratio both traditional 
and new methodology is used. The tradition or conventional 
methodologies include Ordinary Least Square (OLS) and 
Error Correction Model (ECM). The new methodology for 
time varying hedge ratio is wavelet method. All the three 
methodologies are discussed below;  

Ordinary Least Square (OLS)

The traditional approach to estimate minimum variance 
hedge ratio is Ordinary Least Square (OLS) technique, 
where spot returns are regressed on futures returns. The 
regression equation for spot and futures returns can be 
expressed as;

                                          (3)                                          

Where, DS is a spot return and DF is futures returns. b is the 
minimum variance hedge ratio.

The problem with OLS is that it does not incorporate long 
run equilibrium, so another model, error correction is 
estimated to get the optimal hedge ratio. 

Error Correction Model

Error Correction Model is one of the multiple time series 
model used to estimate the speed of adjustment with which 
dependent and independent variables return to equilibrium. 
Error Correction Models (ECMs) are also used to estimate 
the short and long run relationships between the time series. 
The general structure of any ECM is:

                                           (4)             

Where EC is the error correction term. 

In the present study the ECM model extended by Lien and 
Shrestha (2005) is used. The model is as;

                                                                                        (5)

Where u  is a residual of cointegrating equation; t

S  = a bF  + u                                                                   (6)t t t   

    is Error Correction (EC) hedge ratio.

The problem with both the conventional methods is that data 
frequency is to be matched with hedging horizon which will 
lead to smaller sample. To overcome this problem another 
methodology where matching of frequency data and 
hedging horizon is not needed is used here. This 
methodology is based on Wavelet Approach.

Wavelet Approach

The origin of Wavelets though recognized in 1980s was 
before put forth in 1909 by Alfred Haar and nowadays his 
contribution is recognized as Haar wavelets. Wavelet 
Analysis is groomed by the collaborative work of Ingrid 
Daubechies (Mathematician) and Stephane Mallat (Signal 
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Processing Professional). Daubechies (1996) points out that 
wavelet is more than the sum of different ideas from 
different fields merged together. The different fields which 
contribute to Wavelet analysis include mathematics, 
physics, engineering, and computer science. Daubechies 
(1992) presented the theoretical background of wavelets but 
before this its application was first explored by Mallat 
(1989). Wavelet analysis is of two types - continuous 
wavelet analysis and discrete wavelet analysis. The first one 
assumes continuous time functions and second one assumes 
sampling at discrete the points which are equally spaced.

In common parlance wavelets are functions with specific 
properties. These functions satisfy certain mathematical 
requirements which find applications in representing other 
functions or data.  Mathematically wavelets w(t) is a 
function over the real axis such that                   as                .

From definition it follows that wavelet w(t) is localized in 
space or time i.e. with time oscillations of w(t) damp quickly 
to zero. This localization property of wavelets makes them 
interesting and useful in handling the non stationary data 
which changes rapidly over a period of time. A time series 
can be presented as wavelet functions by applying Wavelet 
transformation, which means a time series, can be 
decomposed into multi-resolution components.  

Wavelets are of two types father      and mother   y(t)
wavelets.

                                                                                         (7)

In time series, father wavelet represents smooth and low 
frequency components and mother wavelet represents detail 
and high frequency components. In short we can say that 
father wavelets represent trend components and mother 
wavelets represent all deviations from trend Two scale 
dilution equation is used to derive the wavelets.

The dilution equation for father wavelet          is

                                                                                         (8)

And the dilution equation  for mother wavelet y(t)is

                                                                                         (9)

Where i  and h  are low pass and high pass coefficients k k

respectively and are defined as;

                                                                                       (10)

In practice we deal with time series rather than continuous 
functions. For this we employ wavelet filters which are short    
sequence of values and are denoted by              , L represents 
width of the filter. 

The restrictions                    ,                   ,

(j= non zero integer)must be satisfied by h  (filter k

coefficient).

The filter coefficients I  and h  are related to each other as;k k

The time series x(t) can be represented in terms of wavelet 
coefficients as;

                                                                                        (11)

or                                                                                    (12)

Equation (11) is a representation of time series with different 
time scales obtained from the decomposition of x(t) This 
decomposition process is called multi resolution analysis 
(MRA). In case of discrete time series, discrete wavelet 
transform is used to perform MRA using digital filtering 
technique. Suppose x(t) represents a discrete time series. 
Then MRA leads to decomposition of x(t) as;

                                                                                       (13)

Discrete wavelet transforms are of two types; DWT 
(discrete wavelet transform) and MOWDT (maximal 
overlap discrete wavelet transform). DWT decomposes the 
original series using orthonormal transformation. Suppose 
x ,x ,...........,x represent observations of a discrete time 0 1 N-1 

series and N is an integer multiple of 2 . Then NX1 column j

vector of discrete wavelet coefficients w under DWT is 
given by

                                                                                       (14)

W is a transformed N x N real- real valued matrix satisfying 
TW W=I. Coefficient vector w is also divided into sub vectors 

w , j=1, 2................., J and bj as;j

                                                                                       (15)

                                  Vector and                                 Vector.

w  and  b  actually represent wavelet coefficient vector and j j

scaling coefficient vector respectively. 

Another transformation i.e. MOWDT involves non-
orthogonal transformation which leads to J transform 
coefficients vectors each of length N and N is not necessarily 
multiple of 2. For MOWDT the coefficient vector of length 
(J + 1)N is given by

                                                                                       (16)

Where         is an (J + 1)N X N matrix and
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                                                                                       (17)

Now    and     are wavelet coefficient vector and scaling 
vector respectively.

If the data is sampled at an interval of Dt, then D is j,t 
j-t  is associated with changes on the time scale of length 2,jtD

Dt (Percival and Mofjeld 1997). For example, in case of 
daily data, D , is associated with daily time scale and D  is 1,t 2,t

associated 2 days time scale and so on. Furthermore, B  is j,t
jassociated with length of the time scale which is equal to 2  

Dt or longer. The limit of J is sample dependent, and is 
always less than log (N), N is the sample size. 2

Based on equation (11) spot and futures return time series 
can be decomposed into different time scales as;

                                                                                       (18)

                                                                                       (19)

Where     is the spot return series and DF , is the futures t

return series. 

Now using J decompositions to estimate J regressions;

                                                                                       (20)

where     is the minimum variance hedge ratio associated 
thwith j  time scale. Both DWT as well MODWT can be used 

to perform the above analysis. In this study we have used 
MODWT, because of its advantages over DWT.

Data 

The sample of the study is ten agricultural commodities viz. 
Barley, Chana, Chilli, Guar Gum, Guar Seeds, Jeera, Pepper, 
Soy oil, Soy Bean and Turmeric. The data used in the present 
study is obtained from National Commodities & Derivatives 
Exchange Ltd (NCDEX). The data is collected for different 
periods based on the availability of trading cycles and 

contracts. A pooled series of prices for each commodity is 
generated by the process of roll over from one maturity to the 
next. Daily closing futures prices of current maturity and 
corresponding closing spot prices are used in the study. The 
detailed summary of data period for different commodities 
is presented in Table 1.

Results 

The results of various optimal hedge ratios are provided in 
Tables 2 to 6. The hedge ratios are estimated for different 
hedging horizons viz. 2 days, 4 days, 8 days, 16 days and 32 
days using three different methodologies OLS, ECM and 
Wavelets. The wavelet ratio exceeds both OLS and ECM 
ratios in almost all the cases except in the lowest scale i.e. 2 
days. ECM and OLS ratios are almost similar. The wavelet 
ratio being highest among the three methodologies can be 
attributed to the fact that wavelet approach does not reduce 
the sample size which is quiet prominent in other two 
methodologies. As we go on increasing the time scale hedge 
ratio goes on increasing irrespective of the methodology 
used. 

Conclusion 

In Indian commodity markets, the agricultural futures 
trading have got momentum after the establishment of 
national commodity exchanges and some regulatory 
measures. It is important to assess the functions for which 
the futures markets are established. In this context this study 
has evaluated the optimal hedge ratios and hedging 
effectiveness of agricultural futures. Three different 
methodologies OLS, ECM and Wavelets have been 
employed to estimate optimal hedge ratio. The hedge ratios 
suggested by OLS and ECM are almost equal but wavelet 
hedge ratios are higher than the former two. The hedging 
effectiveness measured by Ederington Measure suggests 
good amount of hedging in Indian markets and more 
particularly in commodity with high trading volumes. 
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